RM0008
Flexible static memory controller (FSMC)
Figure 175. NAND/PC Card controller timing for common memory access
HCLK
A[25:0]
NCEx (2)
NREG, High
NIOW,
NIOR
NWE,
NOE (1)
write_d a t a
re a d_d a t a
MEMx S ET + 1
MEMxHIZ + 1
MEMxWAIT + 1
V a lid
MEMxHOLD + 1
a i147 3 2c
1. NOE remains high (inactive) during write access. NWE remains high (inactive) during read access.
2. NCEx goes low as soon as NAND access is requested and remains low until a different memory bank is accessed.
19.6.4
NAND Flash operations
The command latch enable (CLE) and address latch enable (ALE) signals of the NAND
Flash device are driven by some address signals of the FSMC controller. This means that to
send a command or an address to the NAND Flash memory, the CPU has to perform a write
to a certain address in its memory space.
A typical page read operation from the NAND Flash device is as follows:
1.
2.
3.
Program and enable the corresponding memory bank by configuring the FSMC_PCRx
and FSMC_PMEMx (and for some devices, FSMC_PATTx, see Section 19.6.5: NAND
Flash pre-wait functionality on page 446 ) registers according to the characteristics of
the NAND Flash (PWID bits for the databus width of the NAND Flash, PTYP = 1,
PWAITEN = 1, PBKEN = 1, see section Common memory space timing register 2..4
(FSMC_PMEM2..4) on page 450 for timing configuration).
The CPU performs a byte write in the common memory space, with data byte equal to
one Flash command byte (for example 0x00 for Samsung NAND Flash devices). The
CLE input of the NAND Flash is active during the write strobe (low pulse on NWE), thus
the written byte is interpreted as a command by the NAND Flash. Once the command
is latched by the NAND Flash device, it does not need to be written for the following
page read operations.
The CPU can send the start address (STARTAD) for a read operation by writing four
bytes (or three for smaller capacity devices), STARTAD[7:0], then STARTAD[16:9],
STARTAD[24:17] and finally STARTAD[25] for 64 Mb x 8 bit NAND Flash) in the
common memory or attribute space. The ALE input of the NAND Flash device is active
during the write strobe (low pulse on NWE), thus the written bytes are interpreted as
Doc ID 13902 Rev 9
445/995
相关PDF资料
MCBTMPM330 BOARD EVAL TOSHIBA TMPM330 SER
MCIMX25WPDKJ KIT DEVELOPMENT WINCE IMX25
MCIMX53-START-R KIT DEVELOPMENT I.MX53
MCM69C432TQ20 IC CAM 1MB 50MHZ 100LQFP
MCP1401T-E/OT IC MOSFET DRVR INV 500MA SOT23-5
MCP1403T-E/MF IC MOSFET DRIVER 4.5A DUAL 8DFN
MCP1406-E/SN IC MOSFET DVR 6A 8SOIC
MCP14628T-E/MF IC MOSFET DVR 2A SYNC BUCK 8-DFN
相关代理商/技术参数
MCBSTM32EXLU 功能描述:开发板和工具包 - ARM EVAL BOARD + ULINK2 FOR STM32F103ZG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32EXLU-ED 制造商:ARM Ltd 功能描述:KEIL STM STM32EXL EVAL BOARD
MCBSTM32EXLUME 功能描述:开发板和工具包 - ARM EVAL BOARD + ULINKME FOR STM32F103ZG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200U 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG + ULINK2 RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200UME 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F207IG ULINK-ME RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V
MCBSTM32F200UME-ED 制造商:ARM Ltd 功能描述:KEIL STM32F207IG EVAL BOARD
MCBSTM32F400 功能描述:开发板和工具包 - ARM EVAL BOARD FOR STM STM32F407IG RoHS:否 制造商:Arduino 产品:Development Boards 工具用于评估:ATSAM3X8EA-AU 核心:ARM Cortex M3 接口类型:DAC, ICSP, JTAG, UART, USB 工作电源电压:3.3 V